
Registration number: 2019-312 (previously: ELN-0607)

Implementation Profile for using OASIS DSS in
Central Signing Services

Version 1.4 - 2020-01-17

Copyright © The Swedish Agency for Digital Government (DIGG), 2015-2020. All Rights Reserved.

https://www.digg.se/


1. Introduction
1.1. Terminology
1.2. Requirement key words
1.3. Namespace references
1.4. Identification
1.5. Structure

2. Sign request and response messages
2.1. Sign Requests
2.1.1. Signature on Sign Requests
2.1.2. Data To Be Signed
2.1.3. DSS Extension
2.1.3.1. Version
2.1.3.2. Conditions
2.1.3.3. Signer
2.1.3.4. IdentityProvider
2.1.3.5. SignRequester
2.1.3.6 SignService
2.1.3.7. RequestedSignatureAlgorithm
2.1.3.8. SignMessage
2.1.3.8.1. SignMessage Element
2.1.3.8.2. Requesting Identity Provider to Display SignMessage
2.1.3.9. CertRequestProperties
2.1.3.9.1. AuthnContextClassRef
2.1.3.9.2. RequestedCertAttributes
2.2. Sign Responses
2.2.1. Signature on Sign Responses
2.2.2. Sign Response Status Information
2.2.3. Generated Signature
2.2.4. DSS Extension
2.2.4.1. Version
2.2.4.2. ResponseTime
2.2.4.3. Request
2.2.4.4. SignerAssertionInfo
2.2.4.5. SignatureCertificateChain

3. HTTP POST Binding
3.1. Message Exchange Model
3.1.1. Sign Request XHTML Form
3.1.2. Sign Response XHTML Form

4. References
4.1. Normative References
4.2. Informative References

Table of Contents



5. Changes between versions



This document specifies an implementation profile for exchange of sign requests and responses using the OASIS DSS protocol
[DSS], enhanced by the DSS Extensions for Federated Central Signing Services [DSS-Ext].

Section 2 defines the sign request and response messages and section 3 defines the transport of these messages using HTTP
POST.

Term Defined meaning

User The entity requested to sign a document.

Requesting
Service The service requesting the signature on a particular document by a particular user.

Signing
Service

A centralized service that manages the process to authenticate the user that has been requested to sign a
document, and the process to obtain the user’s signature on the requested document.

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and
OPTIONAL are to be interpreted as described in [RFC2119].

These keywords are capitalized when used to unambiguously specify requirements over protocol features and behavior that
affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-
language sense.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective
namespaces as follows, whether or not a namespace declaration is present in the example:

Prefix XML Namespace Comments

csig http://id.elegnamnden.se/csig/1.1/dss-
ext/ns

For the DSS extension namespace [DSS-Ext] (default
namespace).

dss urn:oasis:names:tc:dss:1.0:core:schema The DSS core namespace [DSS].

ds http://www.w3.org/2000/09/xmldsig\#
The XML Signature Syntax and Processing specification
[XMLSig] and its governing schema [XMLSig-XSD].

saml urn:oasis:names:tc:SAML:2.0:assertion
The SAML V2.0 assertion namespace, defined in the schema
[SAML-XSD].

The following URI identifier identifies this profile:

1. Introduction

1.1. Terminology

1.2. Requirement key words

1.3. Namespace references

1.4. Identification



http://id.elegnamnden.se/csig/1.1/dss-ext/profile

This specification uses the following typographical conventions in text: <EidElement>, <ns:ForeignElement>, Attribute,
Datatype, OtherCode.

1.5. Structure



This section defines a profile for sign requests and responses using the OASIS DSS standard [DSS] in combination with “DSS
extensions for Federated Central Signing Services” [DSS-Ext].

In the following sections the OASIS DSS standard is referred to as “DSS” and the DSS extensions are referred to as “DSS-Ext”.

Conformance with this implementation profile requires full conformance with DSS and DSS-Ext. In case of conflict between
DSS-Ext and DSS, DSS-Ext is the normative one. In case of differences between this implementation profile and DSS-Ext, this
implementation profile is the normative one.

Sign requests are carried in a <dss:SignRequest> element according to requirements and conditions of the following
subsections.

The <dss:SignRequest> element MUST have a Profile attribute with the value http://id.elegnamnden.se/csig/1.1/dss-
ext/profile, which specifies conformance to this implementation profile.

The <dss:SignRequest> element MUST have a RequestID attribute with a value that uniquely identifies this request. The
RequestID value MUST be a random generated value with at least 128 bit entropy and a length of at least 20 bytes.

Sign requests MUST be signed. The signature MUST have a Same-Document URI-Reference (URI=””) to ensure that the
signature covers the complete <dss:SignRequest> element.

The resulting <ds:Signature> element MUST be placed inside the <dss:OptionalInputs> element in accordance with section 5 of
[DSS-Ext].

The Signature Service MUST NOT process the sign request unless the signature of the sign request can be authenticated as
originating from a legitimate Requesting Service.

A representation of the document to be signed MUST be provided in accordance with section 4.1 of [DSS-Ext].

Data to be signed MUST be provided in a <SignTaskData> element.

The <SignTasks> element MAY contain one or more <SignTaskData> elements, representing one or more requested signatures.

The <dss:OptionalInput> element of the sign request MUST contain a <SignRequestExtension> element according to
requirements and conditions of the following subsections.

The version of the [DSS-Ext] specification MUST be "1.1" (default). The version attribute MUST either be absent (default value) or
MUST specify the value “1.1”.

2. Sign Request and Response Messages

2.1. Sign Requests

2.1.1. Signature on Sign Requests

2.1.2. Data To Be Signed

2.1.3. DSS Extension

2.1.3.1. Version

2.1.3.2. Conditions



A <saml:Conditions> element MUST be present. This element MUST NOT contain any information in addition to what is defined
in section 3.1 of [DSS-Ext].

The <Signer> element MUST contain at least the SAML attributes that are necessary in order to uniquely identify the signer. The
present attributes MUST match the attributes that are provided for this signer when authenticating the signer using the Identity
Provider specified in the <IdentityProvider> element.

The Signing Service MUST match all attribute values provided in the <Signer> element with SAML attributes provided for this
signer subject in a valid assertion obtained from the specified Identity Provider.

If any of the attributes specified in the <Signer> element cannot be found or matched with a corresponding attribute value from
an obtained assertion from the specified Identity Provider, the Signing Service MUST reject the sign request.

This element MUST be present, specifying the SAML entityID of the Identity Provider that MUST be used to authenticate the
signer. The Signing Service MUST NOT generate the requested signature unless the signer is successfully authenticated through
this Identity Provider.

This element MUST be present, specifying the identity of the Requesting Service in the form of its SAML entityID.

This element MUST be present, specifying the SAML entityID of the Signing Service that is the target of this sign request.

This element MAY be present, specifying a URI that identifies a signature algorithm that the Requesting Service prefers to be
used when generating the requested signature.

When this element is absent, the default signing algorithm is RSA with SHA-256, http://www.w3.org/2001/04/xmldsig-more#rsa-
sha256.

This element MAY be present to provide information that the Identity Provider MAY display for the user before obtaining the
user’s consent to sign. The message MAY be provided in clear text or in encrypted form. The attribute MustShow MUST be set to
true if the Identity Provider is required to show this message to the user. When the message is provided in encrypted form, the
DisplayEntity attribute MUST include the entityID of the Identity Provider holding the private decryption key. The encryption key
included in the metadata of the identified Identity Provider SHOULD be used to encrypt the message.

The message MUST be encoded using UTF-8 and MUST be using one of the formats plain text, HTML or markdown. The
appropriate MIME type must be declared in the MimeType attribute.

For messages in HTML format, the message MUST NOT contain tags and attributes for each tag other than those listed in the
following table:

HTML Tags Type Allowed attributes

2.1.3.3. Signer

2.1.3.4. IdentityProvider

2.1.3.5. SignRequester

2.1.3.6 SignService

2.1.3.7. RequestedSignatureAlgorithm

2.1.3.8. SignMessage

2.1.3.8.1. SignMessage Element



HTML Tags Type Allowed attributes

h1, h2, h3, h4 Headings style

div, span, p Section style

table, tr, td Table style

b, strong Highlight style

i, u, br Format  

ol, ul, li List  

Allowed HTML entities for character replacement SHALL be restricted to amp, gt, lt, quot and nbsp (in the form &entity-name;).

HTML messages MUST NOT contain any URI references to data outside of the message and MUST NOT contain any JavaScript
in any form.

The means through which the Service Provider requests the Identity Provider to display a sign message is defined in section
7.2.1 of “Deployment Profile for the Swedish eID Framework” [Eid-Profile].

As of version 1.6 of the “Deployment Profile for the Swedish eID Framework” [Eid-Profile] specification, the use of the special
purpose Authentication Context URI:s for sign messages has been deprecated and replaced by the issuance of the
signMessageDigest attribute (see section 7 of [Eid-Profile]).

Note: Identity Providers compliant with the Swedish eID Framework MUST support a new version of a Swedish eID
Framework specification within 180 days from its publishing date. Before this time has passed, a Signature Service needs
to have knowledge about whether a particular Identity Provider is compliant with version 1.6 of [Eid-Profile] in order to
apply a process to determine which AuthnContextClassRef URI to include in the AuthnRequest sent to the Identity Provider
when authenticating the user for signing. Therefore, the previously required steps for this process are listed at the end of
this section.

Also, [Eid-Profile] states that all compliant Identity Providers MUST support processing of the special purpose sigmessage
URI:s according to previous versions of the specification up until the 31th of December 2020.

In addition to the requirements in section 7.2.1 of [Eid-Profile] the Signature Service MUST apply the following process regarding
the inclusion of the AuthnContextClassRef URI to include in the AuthnRequest sent to the Identity Provider when authenticating
the user for signing:

1. Determine requested LoA (Level of Assurance) by either:
i. Get the LoA from the AuthnContextClassRef specified in the sign request as CertRequestProperties, or
ii. if the LoA reference from the sign request is absent then use the default LoA according to the governing policy.

2. Include the LoA URI from the step above as RequestedAuthnContext if supported by the Identity Provider. If this LoA is not
supported by the Identity Provider, fail signing and return an error sign response, indicating a request failure (the requested
LoA was inconsistent with the specified Identity Provider).

Deprecated process:

Must not be used after the 31th of December 2020, when all Identity Providers compliant with the Swedish eID Framework may
drop support of the special purpose Authentication Context URI:s for sign messages.

2.1.3.8.2. Requesting Identity Provider to Display SignMessage



In addition to the requirements in section 7.2.1 of [Eid-Profile] the Signature Service MUST apply the following process to
determine which AuthnContextClassRef URI to include in the AuthnRequest sent to the Identity Provider when
authenticating the user for signing:

The input data for the process is:

Input Description

ClassRef The AuthnContextClassRef specified in the sign request as CertRequestProperties.

SignMessage The SignMessage element in the sign request.

MustShow The MustShow attribute of the SignMessage element.



Input Description

AuthnContextClassRef
URIs

URIs supported by the Identity Provider, retrieved from the Identity Provider's
metadata.

Functions and values:

Functions Values

getLoa(ClassRef) Returns the Level of Assurance represented by a specified AuthnContextClassRef URI.

ClassRef(LoA) The default AuthnContextClassRef URI specified for a specified LoA with no requirements to
display a sign message.

ClassRef(LoA +
SM)

The AuthnContextClassRef URI specified for a specified LoA with requirements to display a
sign message.

Default LoA The default Level of Assurance according to the governing policy.

Process steps:

1. Determine requested LoA (Level of Assurance) by either:
i. Get the LoA from the ClassRef URI specified in the sign request, if present, or
ii. if the ClassRef from the sign request is absent (NULL) then use the default LoA.

2. If no SignMessage is present in the sign request:
i. Request ClassRef(LoA) as RequestedAuthnContext if supported by the Identity Provider.
ii. Otherwise fail signing and return an error sign response, indicating a request failure (the requested LoA was

inconsistent with the specified Identity Provider).
iii. End.

3. If the Identity Provider supports ClassRef(LoA + SM):
i. Include sign message in the AuthnRequest to the Identity Provider.
ii. Request ClassRef(LoA + SM) as RequestedAuthnContext.
iii. End.

4. If MustShow = true:
i. Fail signing and return an error sign response, indicating a request failure (a sign message included a requirement

to be displayed but the specified Identity Provider does not support display of sign messages).
ii. End.

5. Proceed with normal authentication:
i. Include sign message in the AuthnRequest to the Identity Provider (just in case the Identity Provider can make use

of this information anyway).
ii. Request ClassRef(LoA) as RequestedAuthnContext if supported by the Identity Provider.
iii. Otherwise fail signing and return an error sign response, indicating a request failure (the requested LoA was

inconsistent with the specified Identity Provider).
iv. End.

Note: The process defined above requires that the ClassRef(LoA + SM) MUST be used when the sign request includes a
sign message and the Identity Provider has declared that it supports display of sign messages. This allows a requesting
service to send a sign request with a sign message with MustShow = false and still obtain proof of display of sign message
from those Identity Providers that do support display of sign messages.

2.1.3.9. CertRequestProperties



This element MAY be present to provide requested properties of generated signature certificates according with section 3.1.1 of
[DSS-Ext].

When the CertType attribute is present with a value of QC/SSCD the signature service MUST request authentication in accordance
with section 7.2.2 of “Deployment Profile for the Swedish eID Framework” [Eid-Profile], or reject the request.

This element MAY be present to specify the Level of Assurance required in order to issue the signing certificate. This element
serves only to determine the Level of Assurance required.

This element MAY be present to specify any number of attributes that the Requesting Service requires or requests to be included
as a representation of the subject in the signature certificate that is generated with the requested signature.

The Signature Service MUST NOT generate the requested signature unless it can obtain attribute values from an authoritative
source for all requested attributes that is marked as "required". The Signature service SHOULD attempt to provide all
"requested" attributes.

The Signing Service MAY use an Attribute Authority as complementary source to obtain requested attribute values, as long as
the identity assertion provided by the specified Identity Provider is sufficient to uniquely identify the signer. The Sign Requester
MAY provide one or more SAML entityID identifiers of Attribute Authorities in <AttributeAuthority> elements, which could be
used to obtain an attribute value for the requested attribute.

It is left to local policy of the Signature Service whether it accepts any DefaultValue attribute value for any requested attributes
as being provided by an authoritative source. If a DefaultValue is accepted as authoritative, it MUST NOT conflict with any
attributes received by the specified Identity Provider or Attribute Authority when authenticating the signer. If the requested
attribute is provided by the Identity Provider or any Attribute Authority used by the Signing Service, then these values MUST be
used over the DefaultValue.

Sign responses are carried in a <dss:SignResponse> element according to requirements and conditions of the following
subsections.

The <dss:SignResponse> element MUST have a Profile attribute with the value http://id.elegnamnden.se/csig/1.1/dss-
ext/profile, which specifies conformance to this implementation profile.

The <dss:SignResponse> element MUST have a RequestID attribute with a value that is identical to the sign request that is being
serviced through this sign response.

Sign responses MUST be signed. The signature MUST have a Same-Document URI-Reference (URI=””) to ensure that the
signature covers the complete <dss:SignResponse> element.

The resulting <ds:Signature> element MUST be placed inside the <dss:OptionalOutputs> element in accordance with section 5
of [DSS-Ext].

Implementations of this specification MUST return a <dss:ResultMajor> value and MAY return a <dss:ResultMinor> value.
Implementations of this specification are released from the requirement to return any of the listed values of <dss:ResultMinor>,

2.1.3.9.1. AuthnContextClassRef

2.1.3.9.2. RequestedCertAttributes

2.2. Sign Responses

2.2.1. Signature on Sign Responses

2.2.2. Sign Response Status Information



specified in the DSS standard, when returning the <dss:ResultMajor> value urn:oasis:names:tc:dss:1.0:resultmajor:Success,
since all the listed <dss:ResultMinor> values relates to signature validation and not signature creation.

With the exception above, the response values defined in section 2.6 of the DSS standard, amended by status identifiers defined
in section 3.1.7 of [Eid-Registry], SHOULD be used.

The generated signature result data SHALL be provided in <SignTaskData> element according to section 4.1.1 of [DSS-Ext].

One <SignTaskData> element shall be provided for each successfully generated signature as a result of the corresponding
request.

The <dss:OptionalInput> element of the sign response MUST contain a <SignResponseExtension> element according to
requirements and conditions of the following subsections.

The version of the DSS-Ext specification MUST be "1.1" (default). The version attribute MUST either be absent (default value) or
MUST specify the value “1.1”.

The <ResponseTime> element MUST be present in the response.

The <Request> element MUST be present in all responses where a corresponding request could be parsed and authenticated to
originate from a legitimate requester.

The <SignerAssertionInfo> element MUST be present if the signer has been successfully authenticated using the specified
Identity Provider. The present <ContextInfo> child element MUST include an <AssertionRef> child element. The <AssertionRef>
child element MUST contain the value of the ID attribute of the root element of the SAML assertion used to authenticate the
signer.

The <SignatureCertificateChain> element MUST be present if a certificate was issued to the signer. This element MUST
provide a complete chain of certificates up to a self-signed root certificate.

All signature values according to section 2.2.3 MUST be verifiable using the signer certificate provided in this element.

2.2.3. Generated Signature

2.2.4. DSS Extension

2.2.4.1. Version

2.2.4.2. ResponseTime

2.2.4.3. Request

2.2.4.4. SignerAssertionInfo

2.2.4.5. SignatureCertificateChain



This section specifies the protocol binding for transport of sign request and sign response messages using HTTP POST. This
protocol binding implements the message exchange model in section 3.1.

This process is technically equivalent to the procedures implemented by SAML HTTP POST bindings [SAML2Bind], section 3.5.

Sign request and response messages are exchanged between the Requesting Service and the Signing Service with the user
acting as an intermediary through a user agent (typically a web browser) according to the following message flow:

1. The user agent initiates the signing process by an HTTP request to the Service Provider, for example caused by the user
clicking a button on a web page.

2. The Service Provider responds to the user agent with an XHTML form, containing a Base64 encoded sign request.

3. A JavaScript in the XHTML form causes the user agent to send the sign request to the Signing Service using HTTP POST.

4. The user interacts with the Signing Service to complete the requested signature.

5. The Signing Service responds to the user agent with an XHTML form, containing a Base64 encoded sign response.

6. A JavaScript in the XHTML form causes the user agent to send the sign response to the Service Provider using HTTP POST.

7. The Service Provider processes the sign response and a confirmation or status message is returned to the user agent.

The steps 1,4 and 7 are part of the service infrastructure and are outside the scope of this HTTP POST binding specification.

3. HTTP POST Binding

3.1. Message Exchange Model

3.1.1. Sign Request XHTML Form



The sign request XHTML form SHALL have functional properties that are equivalent to the following implementation example:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1//EN' 'http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' xml:lang='en'>

<body onload='document.forms[0].submit()'> 

  <noscript> 

    <p><strong>Note:</strong> Since your browser does not support JavaScript, 

    you must press the Continue button once to proceed.</p> 

  </noscript> 

  <form action='https://csig.example.com/signrequest' method='post'> 

    <div> 

      <input type='hidden' name='Binding' value='POST/XML/1.0'/> 

      <input type='hidden' name='RelayState' value='56345145a482995d'/> 

      <input type='hidden' name='EidSignRequest' value='PD94bWw…WVzdD4='/> 

    </div> 

    <noscript> 

      <div> 

        <input type='submit' value='Continue'/> 

      </div> 

    </noscript> 

  </form>

</body>

The form’s action attribute specifies the URL to the Signing Service and the form MUST have a method attribute with the value
“post”.

The form MUST provide the following parameters:

Parameter Value

Binding “POST/XML/1.0” Identifying implementation of this binding specification

RelayState This parameter MUST contain the value of the RequestID attribute of the <dss:SignRequest> element
that is present in the base64 encoded sign request.

EidSignRequest Base64 encoded sign request.

The sign response XHTML form SHALL have functional properties that are equivalent to the following implementation example:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1//EN' 'http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' xml:lang='en'>

<body onload='document.forms[0].submit()'> 

  <noscript> 

    <p><strong>Note:</strong> Since your browser does not support JavaScript, 

    you must press the Continue button once to proceed.</p> 

  </noscript> 

  <form action='https://sp.example.com/sigResponseHandler' method='post'> 

    <div> 

      <input type='hidden' name='Binding' value='POST/XML/1.0'/> 

      <input type='hidden' name='RelayState' value='56345145a482995d'/> 

      <input type='hidden' name='EidSignResponse' value='PD94bWw…WVzdD4='/> 

    </div> 

    <noscript> 

3.1.2. Sign Response XHTML Form



      <div> 

        <input type='submit' value='Continue'/> 

      </div> 

    </noscript> 

  </form>

</body>

The form’s action attribute specifies the URL to the requesting Service Provider. This URL MUST specify a URL from the
<saml:AudienceRestriction> element that was provided in the corresponding sign request. The form MUST have a method
attribute with the value “post”.

The form MUST provide the following parameters:

Parameter Value

Binding “POST/XML/1.0” Identifying implementation of this binding specification

RelayState This parameter MUST contain the value of the RequestID attribute of the <dss:SignResponse>
element that is present in the base64 encoded sign request.

EidSignResponse Base64 encoded sign response.



[RFC2119]

Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, March 1997.

[DSS]

OASIS Standard - Digital Signature Service Core Protocols, Elements, and Bindings Version 1.0, April 11, 2007.

[SAML-XSD]

S. Cantor et al., SAML assertions schema. OASIS SSTC, March 2005. Document ID: saml-schema-assertion-2.0. See
http://www.oasisopen.org/committees/security/.

[XMLSig]

D. Eastlake et al, XML-Signature Syntax and Processing, W3C Recommendation, February 2002.

[XMLSig-XSD]

XML Signature Schema. World Wide Web Consortium. See https://www.w3.org/TR/xmldsig-core/xmldsig-core-
schema.xsd.

[Eid-Profile]

Deployment Profile for the Swedish eID Framework.

[DSS-Ext]

DSS Extension for Federated Central Signing Services.

[Eid-Registry]

Swedish eID Framework - Registry for identifiers.

[SAML2Bind]

OASIS Standard, Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0, March 2005.

4. References

4.1. Normative References

4.2. Informative References

http://www.ietf.org/rfc/rfc2119.txt
https://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html
http://www.oasisopen.org/committees/security/
https://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
https://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd
https://docs.swedenconnect.se/technical-framework/latest/02_-_Deployment_Profile_for_the_Swedish_eID_Framework.html
https://docs.swedenconnect.se/technical-framework/latest/09_-_DSS_Extension_for_Federated_Signing_Services.html
https://docs.swedenconnect.se/technical-framework/latest/03_-_Registry_for_Identifiers.html
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf


Changes between version 1.3 and version 1.4:

Updates of references and change of logotype.

Updates to section 2.1.3.8.2, "Requesting Identity Provider to Display SignMessage", with a more simple process of
determining the Level of Assurance URI to include in requests.

Changes between version 1.2 and version 1.3:

In section 2.1.3.9, "CertRequestProperties", an requirement to adapt authentication request procedures when the requested
signature is a qualified electronic signature was added.

Changes between version 1.1 and version 1.2:

In section 2.2.2, a reference to section 3.1.5 in [Eid-Registry] was changed to section 3.1.7.

Changes between version 1.0 and version 1.1:

This profile now refers to version 1.1 of the “DSS Extensions for Federated Central Signing Services” specification.

Changes were made to section 2.1.3.8, “SignMessage”, in order to define usage of the <SignMessage> element.

The URI identifier that identifies this profile has been changed from http://id.elegnamnden.se/csig/1.0/eid2-dss/profile
to http://id.elegnamnden.se/csig/1.1/dss-ext/profile.

5. Changes between versions


