E-LEGITIMATIONS
NAMNDEN

elDAS Constructed Attributes Specification for the
Swedish elD Framework

Version 1.0 - 2017-03-28

ELN-0611-v1.0



Table of Contents

1. Introduction
1.1. Requirement key words

2. Provisional Identifier
2.1. Provisional Identifier (prid) Attribute

2.2. Provisional Identifier Persistence Indicator (pridPersistence) Attribute
2.3. Algorithms

2.3.1. Algorithm: default-eIDAS

2.3.2. Algorithm: colresist-eIDAS

2.3.3. Algorithm: special-characters-eIDAS

2.4. Algorithm Selection and Resulting pridPersistence Value

3. References
Appendix A. Countries with pridPersistence of class A
Appendix B. Countries with pridPersistence of class B

Appendix C. PRID Algorithm implementations (Java)



1. Introduction

This document extends “Attribute Specification for the Swedish elD Framework”, [EidAttributes], providing specifications for
constructed attributes.

The concept of constructed attributes is introduced in Swedish national authentication nodes (proxy nodes) delivering identity
assertions to Swedish Service Providers based on user authentication with a foreign elD.

A constructed attribute is an attribute that was not delivered by the foreign Identity Provider service, but was constructed in the
Swedish authentication node by applying defined rules and algorithms to the authenticated user (subject) received from the
foreign Identity Provider service (typically an eIDAS node).

1.1. Requirement key words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in [RFC2119].

These keywords are capitalized when used to unambiguously specify requirements over protocol features and behavior that
affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-
language sense.



2. Provisional Identifier

The Attribute Specification for the Swedish elD Framework defines the attributes prid and pridPersistence.

The prid attribute holds a unique identifier for a person derived from attributes provided from another country. The purpose of
this attribute is to provide a common unique attribute for an authenticated user independently of the attribute set or the
characteristics of these attributes provided by the authentication service in the other country.

The pridPersistence attribute provides an indicator of the expected persistence of the prid identifier over time. The value in this
attribute is determined by assessing the persistence of underlying foreign attributes from a particular source used in a particular

prid generation algorithm.

This document defines a set of prid algorithms, when to use each algorithm and the resulting pridPersistence value.

2.1. Provisional Identifier (prid) Attribute

The provisional identifier (prid) attribute is a SAML attribute identified by the SAML attribute name urn:oid:1.2.752.201.3.4.
The prid attribute holds a string value containing the following data:

{2 letter ISO 3166 country code of elD country} + ”: + {10..30 character identifier}
Syntactically, provisional ID is defined by the following regular expression:

~[A-Z]1{2}:[0-9a-z][0-9a-z-]{8,28}[0-%a-2z]%
Examples:

NO:29078534891

DK:09208-2002-2-194967071622
The 2 letter country code is the 2 letter ISO 3166 country code expressed in upper case letters, for example, “SE” for Sweden
and “NO” for Norway. This identifies the country that issued the elD used to authenticate the user (i.e., provided the
infrastructure to identify the person). This is not necessarily the person’s actual citizenship or country of residence.
The identifier component holds a minimum of 10 and a maximum of 30 characters. The primary reason for this is to provide an
identifier that can be displayed to a user and still relatively convenient to write down or communicate by humans in case of
problems. The characters in the identifier component are restricted to the numeric characters 0-9, the letters a-z and the hyphen
character “-“ (0x2D) serving as delimiter. Letters “a-z” MUST be lower case. Should a provisional ID ever be presented with
upper case letters then such letter should be matched using case insensitive matching (e.g. “a” is equivalent to “A”). The
identifier component MUST NOT start or end with a hyphen character. The resulting ID MUST have at least 8 characters that are

not a hyphen character, for example, the character sequence “1-2-3-4-56" is not allowed as it only holds 6 distinguishing ID
characters.

2.2. Provisional Identifier Persistence Indicator (pridPersistence) Attribute

The provisional identifier (pridPersistence) attribute is a SAML attribute identified by the SAML attribute name
urn:0id:1.2.752.201.3.5.

The pridPersistence attribute holds a string value containing the following data:



{1 letter Identifier (A, B or C)}
Examples:

A

B

C

Value definitions:

Value Defined meaning

Persistence over time is expected to be comparable or better than a Swedish national ID number
A (personnummer). This means that the identifier typically is stable throughout the lifetime of the subject and is
typically preserved even if the subject changes address, name or civil status.

Persistence over time is expected to be relatively stable, but lower than a Swedish national ID number
(personnummer). This means that the identifier typically remains unchanged as long as the person does not

B change address, name or civil status. Such or similar event may cause the identifier to change but the identifier
will not change just because the subject gets a new elD (electronic identification means) or changes elD
provider.

c No expectations regarding persistence over time. The identifier may change if the subject changes elD or elD
provider.

2.3. Algorithms

This section defines algorithms for generating the identifier component of prid attribute values. The identifier component makes

up the characters following the “:” (colon) character in the prid.

2.3.1. Algorithm: default-eIDAS
Name: default-eIDAS
Input values:

e eidasID - The identifier string value from the elDAS Personldentifier attribute from the attribute source (identified by the
attribute name http://eidas.europa.eu/attributes/naturalperson/PersonIdentifier.

Calculated values:

e strippedID = eidasID after:
i. removing the 6 leading characters matching the regular expression ~[A-za-z]1{2}[\/]1(SE\|se)[\/] (e.g., "NO/SE/"),
and;
ii. removing any white space and non-printable characters.

e normalizedID = strippedID converted according to the following steps:

. converting all upper case letters [A-Z] to lower case, and,

i. replacing with a single “-“ character, all sequences of characters of length (1...n) that does not contain [0-9] or [a-Z],
and,

remove any leading or trailing “-“ characters.

Result:



If length of normalizedID < 10 characters:

Return normalizedID padded with leading “0” (zero) characters until length = 10 characters.
If length of normalizedID 10 - 30 characters:

Return normalizedID
If length of normalizedID > 30 characters:

Return the string representation of the first 30 hexadecimal digits of the SHA256 hash of the UTF-8 encoded bytes of
strippedID.

Exceptions:
If the following conditions occur in the process, prid generation fails:

1. Leading 6 characters of Personldentifier does not match regexp ~[A-zZa-z]{2}[\/](SE|se)[\/]$
2. normalizedID < 8 characters (not counting “-“ (hyphen) characters).

Collision resistance:

All eIDAS Personldentifier attributes are required to be unique. That uniqueness is preserved in this algorithm based on the
assumption that distinguishing symbols in the Personldentifier are represented exclusively by case insensitive letters a-z and
numbers 0-9. If this is not a case for the Personldentifier provided by a particular country, then this algorithm should not be
selected due to the risk of ID collisions.

In case the normalized identifier string exceeds 30 characters this algorithm falls back on providing a 30 hex digit representation
of a concatenated SHA-2 hash value. The collision probability for such identifier among 2 users is 1 in 1,25 * 10\"36 (Calculated
as 16\"30 - 16\"29 since first digit can not be 0). For a population of 100 million people the probability of a collision is

approximately 1 in 2.5 * 10\"20 or 1 in 250 trillion countries of that population size'.

Countries typically do not use ID attributes that exceed 30 characters in size, but it cannot be ruled out that some countries will

generate an ID for cross-border use that is different from a national ID and that that ID may exceed 30 characters. This algorithm
assumes that the collision resistance provided is sufficient given both the low probability combined with the fact that only a very
small fraction of users from any country outside of Sweden is likely to authenticate to a Swedish e-service. A collision among all
citizens would in most cases not be security critical since the unique eIDAS ID in its original form also is present in the assertion
to the service provider, which guarantees that a transaction is traceable back to the right individual.

In case these properties are not enough to guarantee sufficient collision resistance, the algorithm colresist-eIDAS should be
used.

Examples:
Personldentifier Resulting prid
NO/SE/05068907693 NO:05068907693
DK/SE/09208-2002-2-194967071622 DK:09208-2002-2-194967071622
UK/DK/1234567890 UK:NULL (Failed: target country is not SE)
DE/SE/#12345-3456//ABC DE:12345-3456-abc
DE/SE/aErf#(EAdJ9) DE:0aerf-ead9

A fan AT /T A A\ NI /Failade ]l ama tlamin O IN Almaadawa)



ue/se/dcri#\cAg) INULL (Fdiied. LesSS Uidll O IV Clldrdelers)
DE/SE/(1952 12 14-1122) DE:19521214-1122
19521214-1122 NULL (Failed: Leading 6 character format error)

DE/SE/1234567890123456789012345678901 DE:3b7184c0ceaf76a9607a31e4e1f87f

2.3.2. Algorithm: colresist-eIDAS

This algorithm is identical to default-elDAS except that the hashed expression of the ID in case the normalized ID exceeds 30
characters, has higher collision resistance by expressing the ID in radix 36 instead of radix 16 (Hexadecimal)z.

Name: colresist-eIDAS

Input values: Identical to default-eIDAS

Calculated values: Identical to default-eIDAS

Result:

If length of normalizedID < 10 characters:
Identical to default-eIDAS result

If length of normalizedID 10 - 30 characters:
Identical to default-eIDAS result

If length of normalizedID > 30 characters:

Return the string representation of the first 30 radix 36 digits of the SHA256 hash of the UTF-8 encoded bytes of
strippedID.

Exceptions: Identical to default-eIDAS
Collision resistance:

Expression of this ID in hashed form use 30 radix 36 symbols. This reduces the collision resistance among 2 usersto 1in 4.75 *
10\"46. The collision probability among 100 million users is reduced to approximately 1 in 10\\31.

Examples:
Personldentifier Resulting prid
NO/SE/05068907693 NO:05068907693
DK/SE/09208-2002-2-194967071622 DK:09208-2002-2-194967071622
UK/DK/1234567890 UK:NULL (Failed: target country is not SE)
DE/SE/#12345-3456//ABC DE:12345-3456-abc
DE/SE/aErf#(EAd9) DE:0aerf-ead9

de/se/aErf#(EAd) NULL (Failed: Less than 8 ID characters)



DE/SE/(1952 12 14-1122) DE:19521214-1122
19521214-1122 NULL (Failed: Leading 6 character format error)

DE/SE/1234567890123456789012345678901 DE:1hc3tpoleczqudt8jz2995k2rq7nt8

2.3.3. Algorithm: special-characters-eIDAS
The default-elDAS and the colresist-elDAS algoritms are suitable when the base identifier from the authenticating country is
constructed from digits and basic case-insensitive characters. These algoritms do not work on identifiers constructed as a

Base64 string of binary data, such as a hash of another identifier.

The present algoritm is intended to be used where the base identifier contains case-sensitive characters and where characters
other than a-z and 0-9 are used to add entropy to the identifier.

Name: special-characters-eIDAS

Input values: Identical to default-eIDAS.

Calculated values: Identical to default-eIDAS with the exception that normalizedID is not calculated and used.
Result:

Return the string representation of the first 30 radix 36 digits of the SHA256 hash of the UTF-8 encoded bytes of
strippedID.

Exceptions:
If the following conditions occur in the process, prid generation fails:

1. Leading 6 characters of Personldentifier does not match regexp ~[A-za-z]1{2}[\/](SE|se)[\/]1$
2. strippedID < 16 characters.

Collision resistance: Identical to colresist-eIDAS.

Examples:
Personldentifier Resulting prid
AT/SE/Zk2ME2pjxwzQOjVeFGeqSlage34= AT:50bwytdle2mzexopcolmdhmhznihms

2.4. Algorithm Selection and Resulting pridPersistence Value

This section defines the current algorithm selection rules and the resulting pridPersistence value. These rules are processed in
the presented order. The first rule where the present conditions matches all the matching rules is selected.

If the present conditions do not match any of the listed rules, then prid generation fails.

Rule 1 Description
Matching rule 1 Authenticated attributes are provided by an eIDAS node (proxy service).

Matching rule 2 Authenticated subject is a person and has a PersonIdentifier attribute.



Rule 1
Matching rule 3
Selected algorithm

pridPersistence value

Rule 2

Matching rule 1
Matching rule 2
Matching rule 3
Selected algorithm

pridPersistence value

Rule 3

Matching rule 1
Matching rule 2
Selected algorithm

pridPersistence value

Description
Attributes provided by any of the countries listed in Appendix A.
default-eIDAS

A

Description

Authenticated attributes are provided by an eIDAS node (proxy service).
Authenticated subject is a person and has a PersonIdentifier attribute.
Attributes provided by any of the countries listed in Appendix B.
default-eIDAS

B

Description

Authenticated attributes are provided by an elIDAS node (proxy service).
Authenticated subject is a person and has a PersonIdentifier attribute.
default-eIDAS

C



3. References

[RFC2119]

Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, March 1997.
[SAML2Core]

OASIS Standard, Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0, March 2005.
[SAML-XSD]

S. Cantor et al., SAML assertions schema. OASIS SSTC, March 2005. Document ID saml-schema-assertion-2.0. See
http://www.oasisopen.org/committees/security/.

[XML-Schema]

XML Schema Part 2: Datatypes Second Edition, W3C Recommendation, 28 October 2004. See
http://www.w3.0rg/TR/xmlschema-2/.

[EidAttributes]
Attribute Specification for the Swedish elD Framework.
[eIDAS-Attr]

elDAS SAML Attribute Profile, 22 June 2015.


http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.oasisopen.org/committees/security/
http://www.w3.org/TR/xmlschema-2/
http://elegnamnden.github.io/technical-framework/latest/ELN-0604_-_Attribute_Specification_for_the_Swedish_eID_Framework.html
https://joinup.ec.europa.eu/sites/default/files/eidas_saml_attribute_profile_v1.0_2.pdf

Appendix A. Countries with pridPersistence of class A

The following countries provide an elDAS Personldentifier attribute that has been determined to match pridPersistence level A:

ISO 3166 Name
DK Denmark
NO Norway

SE Sweden



Appendix B. Countries with pridPersistence of class B

The following countries provide an eIDAS Personldentifier attribute that has been determined to match pridPersistence level B:

ISO 3166 Name

DE Germany



Appendix C. PRID Algorithm implementations (Java)

default-eIDAS

public class PridGenDefaultEidas {
private static final String personldentifierPrefixRegexp = "~[A-Za-z]{2}[\\/]1(SE|se)[\\/]";
public static String getPridIdentifierComponent(String personIdentifier) {
if (personIdentifier == null) {
return null;
}
if (!personIdentifier.substring(@, 6).matches(personIdentifierPrefixRegexp)) {
return null;
}
// Get ID component without whitespace and non-printable characters
String strippedID = personIdentifier.substring(6).replaceAll("\\s+", "");
// Convert to lower case
String normalizedID = strippedID.tolLowerCase();
// Replace sequences of non ID characters to "-"
normalizedID = normalizedID.replaceAll("[”a-z0-9]+", "-");
// Remove leading and trailing "-"
normalizedID = normalizedID.replaceAll("~-+", "").replaceAll("-+$", "");
if (normalizedID.replaceAll("-", "").length() < 8) {
return null;
}
if (normalizedID.length() < 10) {
normalizedID = "000000OOOR".substring(normalizedID.length()) + normalizedID;

}
if (normalizedID.length() > 30) {
try {
MessageDigest md = MessageDigest.getInstance("SHA-256");
byte[] digest = md.digest(strippedID.getBytes(Charset.forName("UTF-8")));
return new BigInteger(1l, digest).toString(16).substring(@, 30);
} catch (NoSuchAlgorithmException ex) {
return null;
}
}
return normalizedID;
}
}
colresist-eIDAS

public class PridGenColResistEidas {
private static final String personldentifierPrefixRegexp = "~[A-Za-z]{2}[\\/]1(SE|se)[\\/]";
public static String getPridIdentifierComponent(String personIdentifier) {
if (personIdentifier == null) {
return null;
}
if (!personIdentifier.substring(@, 6).matches(personIdentifierPrefixRegexp)) {
return null;
}
// Get ID component without whitespace and non-printable characters
String strippedID = personIdentifier.substring(6).replaceAll("\\s+", "");
// Convert to lower case
String normalizedID = strippedID.toLowerCase();
// Replace sequences of non ID characters to "-"
normalizedID = normalizedID.replaceAll("[*a-z0-9]+", "-");



// Remove leading and trailing "-
normalizedID = normalizedID.replaceAll("~-+", "").replaceAll("-+$", "");
if (normalizedID.replaceAll("-", "").length() < 8) {
return null;
}
if (normalizedID.length() < 10) {
normalizedID = "00000OOOVR".substring(normalizedID.length()) + normalizedID;

}
if (normalizedID.length() > 30) {
try {
MessageDigest md = MessageDigest.getInstance("SHA-256");
byte[] digest = md.digest(strippedID.getBytes(Charset.forName("UTF-8")));
return new BigInteger(1l, digest).toString(36).substring(@, 30);
} catch (NoSuchAlgorithmException ex) {
return null;
¥
}

return normalizedID;

special-characters-eIDAS

public class PridGenBase64Eidas implements PridGenerator {
private static final String personIldentifierPrifixRegexp = "~[A-Za-z]{2}[\\/]1(SE|se)[\\/]1";
@Override
public String getPridIdentifierComponent(String personIldentifier) {
if (personIdentifier == null) {
return null;
}
if (!personIdentifier.substring(@, 6).matches(personIdentifierPrifixRegexp)) {
return null;
}
//Get ID component without whitespace and non-printable characters
String strippedID = personldentifier.substring(6).replaceAll("\\s+", "");
if (strippedID.length() < 16) {
return null;

}

try {
MessageDigest md = MessageDigest.getInstance("SHA-256");
byte[] digest = md.digest(strippedID.getBytes(Charset.forName("UTF-8")));
return new BigInteger(1l, digest).toString(36).substring(@, 30);

} catch (NoSuchAlgorithmException ex) {

return null;

[1]: Birthday paradox approximation p(n) ~ n\"2 / 2m, where p(n) is the collision probability, n is the number of people and m is
the number of possible ID combinations.

[2]: Radix 36 express values ranging from 0 to 36 through a single character using the symbols
”0123456789abcdefghijkimnopgrstuvwxyz” in the presented order.



